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Riemann zeros, prime numbers, and fractal potentials
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Using two distinct inversion techniques, the local one-dimensional potentials for the Riemann zeros and
prime number sequence are reconstructed. We establish that both inversion techniques, when applied to the
same set of levels, lead to the same fractal potential. This provides numerical evidence that the potential
obtained by inversion of a set of energy levels is unique in one dimension. We also investigate the fractal
properties of the reconstructed potentials and estimate the fractal dimension®te h& for the Riemann
zeros andD = 1.8 for the prime numbers. This result is somewhat surprising since the nearest-neighbor spac-
ings of the Riemann zeros are known to be chaotically distributed, whereas the primes obey almost Poissonlike
statistics. Our findings show that the fractal dimension is dependent on both level statistics and spectral rigidity,
A5, of the energy levels.
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I. INTRODUCTION quantum Hamiltonian from its eigenvalues. Their approach
to solving the inverse problem was to use a “dressing trans-
In the early work of Wuet al. [1] a general numerical formation” based on techniques developed in the solution of
algorithm was developed that could reconstruct a onethe nonlinear Korteweg—de Vries equation. Their method,
dimensional1D) local potential from an essentially arbitrary being much more efficient numerically than the direct SE
set of levels(i.e., bound stat@s The basic idea behind the approach resulted in many more levels being fitted for the
method(see Sec. Il beloyis to functionally minimize the same numerical effort. Unfortunately, rather than directly ex-
potential so that it exactly reproduces the prescribed energgmining the Riemann zeros, as Wu and Sprung had previ-
eigenvalues. This is, in principle, a solution of the 1D quan-ously done, they investigated the fractal properties of poten-
tum inverse problem if one could fit the infinitely many lev- tials generated from energy levels whose nearest-neighbor
els to a local potential. Of course, this is beyond any numerispacing distributiofNNSD) were the Gaussian unitary en-
cal algorithm’s ability, and one has to settle for fitting only semble(GUE) [5]. Although the NNSD of the Riemann ze-
the firstN eigenvalues. Since the algorithm requires a directos are also known to belong to the GUE, Ramanal.
solution of the Schrdinger equationSE) for every eigen-  could only make general comments about 1D potentials gen-
value, it is practically limited to fitting roughljN~O(10°) erated from the GUE statistics, but nothing specific about the
eigenvalues. In an interesting application of this algorithm,Riemann zeros. Nevertheless, their work suggests, using
Wu and Sprund?] chose as their eigenvalue spectrum theO(10%) levels, a fractal dimension dd=2 asN—o for
complex zerosit is implicit throughout this paper that zeros GUE reconstructed potentials. By extension, they conjec-
refer to the complex zeros of tliefunction) of the Riemann  tured that their more accurate estimate of the fractal dimen-
zeta function, which is well known in number thedB8]. By  sion leads to a value dd=2 for the Riemann potential.
finding a local 1D potential that exactly reproduced the first In a reply to this work, Wu and Spruri@] have pointed
N=500 “eigenvalues,” they had effectively found a 1D out that using a different spectrugine., a set of energy levels
guantum Hamiltonian for the first 500 zeros of the Riemannwhose NNSD is the GUE rather than the actual complex
{ function. This is, of course, interesting in its own right Riemann zergsdoes not necessarily imply that the fractal
because such Hamiltonians have long been conjectured timension of the reconstructed potential should be the same.
hold the key to proving the celebrated Riemann hypothesi©ne of the key reasons behind this statement is the lack of
[3]. Their reconstructed potential was found to be fractal, andong-range correlationsi.e., the so-called spectral rigidity
the fractal dimension was estimated tolbe 1.5. This result  Aj) in the generic GUE spectrum used in Refl. Indeed, it
suggests the intriguing possibility that an integrable systemvas argued that if the fitting spectrum does not contain
with time-reversal symmetry may generate the Riemann zeproper long-range correlations, the resulting potential may
ros provided the potential is fractal. It is worth commentingappear to be more random than the Riemann zeros potential.
that the precise meaning one can attach to such 1D potential$is, of course, can result in two different estimates for the
is not clear. In particular, taking a chaotic syst¢ime., the fractal dimension even if a large number of levels have been
Riemann zergsand forcing it to be integrable will lead to a fitted. Another important concern raised in their reply is that
potential that is dependent on the dimension of the Hilberthe potential obtained by inversion of the levels need not be
space(i.e., number of levels fitted unique. In other words, even if Ramagi al. had used the
Motivated by the work mentioned above, Ramahial. = Riemann zeros as their fitting spectrum, they may not have
[4] also investigated the reconstruction of a 1D system’'sbtained the same potential; that is, the fractal dimension
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may depend on the inversion technique applied. where ¢,,(x) is thenth normalized wave function. The func-

In light of the above, we believe that there are severational minimization can be performed using a conjugate gra-
guestions that have been left unanswer@dFor the same dient method and the Numerov technique can be used to
set of energy levels, are the potentials reconstructed frorgolve the discrete 1D SE. We have used this approach to
different inversion procedures uniqué®) Does the fractal successfully reproduce all of the numerical data for the Rie-
dimension depend on the inversion techniqi@? What is  mann zeros reported in R¢2]. Unfortunately, even on mod-
the fractal dimension for the Riemann zeros potenti@l?ls  ern PC(Workstation$, this direct approach involves a large
the fractal dimension a generic quantity for reconstructed 1lxomputational undertaking. We have found it totally imprac-
potentials or does it depend on the NNSD angstatistics of  tical to go beyondN=2000 levels when using this technique.
the energy level spectrum?

In what follows, we will attempt to provide answers to B. Method of the dressing transformation
these questions. We will begin by presenting a brief over- ) i .
view of the numerical inversion techniques used in Refs, The basis for the dressing transformation can be found
[2,4], and then apply them to reconstruct the potentials of th? the soliton theory of nonlinear wave equations. The
Riemann zeros and prime numbers. Our decision to focus ofietails of this approach are presented in Ref, and we
these number sequences is threefold. First, the contradictojVe here only the essential equations required for its imple-
resultsD=1.5 andD =2 for the fractal dimension of the Mentation. The starting point is a given set of levels
Riemann potential remain unresolved. Second, the Riemanfp:€1: - - - €n—1,€n, Which have been shifted so that one
zeros are known to be dual to the prime numbers in the sendt®s exactlyN—1 negative eigenvalues with the last eigen-
that all of the primes are encoded through the complex Rievalue satisfyingey=0. In this way, the potential is con-
mann zeros via Riemann’s formul@,7]. One may then struc_tepl from the “top down.” 'I_'hls does not impose any
speculate as to whether any additional relationships betwed@strictions other than the requirement that the number of
the Riemann zeros and prime numbers can be obtained frolgvels to be fitted is flxgd in advance.'An initial potenugl
the reconstructed fractal potentials. Finally, since the NNSDY(X) =0 is then used as input and the first-order differential
of the Riemann zeros belong to the GUE class, and the prim@duation(diffeq)
numbers obey a more poissonlike distribution, it is interest-
ing to investigate the dependence of the fractal dimension on
the level statistics. The reconstructed potentials obtained

from the two inversion methods will then be used to addres%‘znec\;%z?tﬁgsnbuetﬁrf'gﬁ% \g':tgl(l())o:in(isagdneejvmc;tle. m(l);b?)e
the questions of uniqueness and fractal dimension. P K P

is constructed from the diffeq:

fr—f2+V(x)=¢€ 3

Il. RECONSTRUCTING THE POTENTIAL FROM A SET W(X)=2e+2f2—V(x). (4)
OF LEVELS
In this section, we will give a brief overview of the two This new poten_’ual IS th_en Substituted bac_:k into E3).[i.e.,
inversion techniques used in this paper to reconstruct thXV(X.)HV(X)] W'.th the eigenvalue now being= 'EN‘Z'.The
local 1D potentials. After this presentation, we will compareChO'Cef(o):O IS (_enforced through_out the cal_cul_atlon_ and
the reconstructed potentials for the Riemann zeros and prim%nsures th_at the .fmal potgntﬂe(l(x) IS even. This iterative
number sequence obtained from both methods. procedure is cont!nued un't|l all of thg eigenvalues have been
exhausted. The findlV(x) is the desired reconstructed po-

_ tential that reproduces exactly all of tikeeigenvalues. The

A. Direct SE approach integration of Eq.(3) can be performed using any standard

Perhaps the most intuitive approach to solving the inversgethod, but we have used a fourth-order Runge-K(Rtg)

problem is to directly invoke the SE. One initially starts from method with step siza=1x10"° to ensure high accuracy.
some arbitrary potentia¥(x) (although for reasons of con- Nevertheless, it should be clear that the dressing transforma-
vergence, it is wiser to start from the semiclassical potentialion is numerically a far superior method since it does not
as described in Ref2]) and solve the SE to obtain a set of require a large parameters’ search in the construction of the

eigenvalues:,. One then defines a “cost function” potential. Consequently, it is easy to fit orders of magnitude
more levels than in the direct SE approach.

F=2 (0= En)?, (D) _ _
n C. Uniqueness of the reconstructed potentials
Having provided the basic background for numerically
ving the inverse problem, we are now in a position to
address the question of uniqueness. To this end, we first re-
" construct the potential for the Riemann zeros witk: 500.
This number was chosen because it represents the maximum
number of Riemann zeros fitted in RE2). Figure 1 displays
oF :22 (en—E ) 2(X)=0 2) the potential obtained from the direct SE approdstlid
oV(x) wooonon ' curve and the dressing transformati¢mashed In the inset

whereE, are the exact eigenvalues one wishes to reproduc%OI
PotentialV(x) is now adjusted in such a way as to minimize
the cost function. Mathematically, this results in the follow
ing functional equation:
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FIG. 1. The reconstructed potential for the Riemann zeros with FIG. 2. As in Fig. 1, but for the prime numbers. Again, the
N =500 fitted levels. The dashed curve is obtained from the dresssurves are indistinguishable for energies below the last fitted level.
ing transformation while the solid curve is from the direct SE ap-
proach. The inset shows an enlargement of the potential near thtie jumps do not change &$ increases In contrast, any
minimum. The two curves are indistinguishable bebow35. local structure present in the prime potential is completely

washed out byN=10000. This suggests that the prime po-

to the figure, we zoom in on the the regige [0,5] to illus-  tential may have_,- a larger fract_al dimensi@re., close toD
trate the remarkable agreement between the two methods;2 Of white nois¢ than the Riemann zeros. Indeed, these
which continues until one approaches energies near the |a9b5¢fvat'0ns lead us to consider more closely the fractal po-
fitted level (x~35). Obviously, above this threshold the po- tentials generated by Ramaetial. [4].
tentials cannot agree since the SE approach uses the semi-A_S we mentioned earller, the_po_tent_lals in Ref] were
classical profile as its zeroth-order potential whereas th@btained from a generic GUE distribution without account-
dressing transformation takeg(x)=0. However, as the Ind for theAs statistics. A comparison of our Figsie-3(c)
number of levels is increased, this threshold is moved tdVith their Figs. 1a)-1(c) clearly illustrates that a generic
higher and higher energies, so that\ss> o, the two poten-
tials should agree over all space. The equivalence between (a)
the two inversion techniques has been checked for ud to
= 2000 (which computationally speaking, represents the up-
per limit of the SE approaghbut we see absolutely no rea-
son why this equivalence should not be true for arbitrarily
largeN. Nevertheless, to ensure that this agreement is not in
some way fortuitous, we have also reconstructed the poten- (b)

(d) |
> ) (e)
tial for the prime number sequence wih=500. The results
of the two approaches for the primes are shown in Fig. 2.
Again, the potentials are indistinguishable except for regions
near the last fitted level.

®

01 2 3 4 5

V(x)

It also proves instructive to compare in more detail the
reconstructed potentials for the Riemann zeros and prime
numbers. To facilitate this comparison, we present in Fig. 3
enlargements of the potentials fide=2000,5000,10 000 lev-
els around the minimurnfone could look at other regions on
the curves and obtain similar graphBigures 3a)—3(c) cor-
respond to the Riemann zeros whereas Figd)-3(e) cor-
respond to the prime potential. Several interesting observa-
tions can be made at this point. First, we note that for a given
number of fitted levels, the Riemann zeros potential looks
less “noisy” than the prime potential. In fact, by
=10000, the prime potential takes on the characteristics of k|G, 3. Panelga)—(c) and (d)—(f) correspond to the Riemann
(roughly speakingwhite noise, whereas the Riemann zeroszeros and prime potential, respectively. The number of fitted levels
appear to have far more structure. In particular, the Riemanftom top to bottom i\ =2000,5000,10 000. We have zoomed in on
potential contains large jumps at very specific spatial posithe rangex[0,5] to highlight the differences between the two
tions which appear to be quite robuse., the positions of potentials.

()
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GUE distributioncannotcapture, even qualitatively, the de-
tails of the Riemann zeros potential. We are therefore in-
clined to agree with the assertion in RE] that long-range
correlations in the level spectrum play an important role in
determining the fractal properties of the potential. This is
further emphasized by noting that for lar@¢ the prime
potential [see Fig. &)] looks very similar to the largé\
GUE fractal potential in Refl4], which was conjectured to
haveD=2 asN—wx. It is perhaps then not so ambitious to
suggest that the prime potential also has fractal dimensior
D=2. We cannot, however, make such claims for the Rie-
mann zeros, which evidently require a more careful quanti-
tative analysis.

1.2 1

log(PAzx)

0.7 r

0.2
-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

Ill. FRACTAL DIMENSION
log(Ax)

We have seen in the preceding section that for the same
number of fitted levels, the oscillatory behavior of the Rie-
mann zeros and prime potentials are quite different. Wh
significance theriif any) do these rapid oscillations have on

the fractal dimension? Before we answer that question, it islo 000<N<40 000 (not shown, the slope is found to be
perhaps use_ful to give a shor.t account of the m_ethod_used ractically unchanged. We are, therefore, led to conclude that
the authors in Ref§2,4] to estimate the fractal dimension of the fractal dimension of the primes®=1.8. We are, how-

their reconstructed potentials. o :
The standard procedure for numerically estimating the v o OPEN to the possibility that & the fractal dimen

fractal dimension of curves such as those we have generat%'ﬂ?n of the prime potential approachBs=2, based on the

. ) ) . alitative behavior of the potential seen in Fig&d)33(f).
is to use the box-counting techniqy8]. Simply put, the Indeed, a similar slow convergence of the fractal dimension

box-counting technique involves choosing a region on th%vas also observed in Re] for the GUE statistics. How-

rve (over which the char r of th illation n ; . Rl .
curve (ove ch the character of the oscillations does Otever, numerically investigating this convergence would re-

change and normalizing the axes so that the region is a_ . . N i
square of side length equal to unity. The square region is thep ' © possibly levels of the order of 30which is well be

divided inton? cells of side lengtiix=1/n and the number yond the capabilities of our current computational facilities.
of cells P that contain a portion of the curve is counted. A

plot of log(PAX) versus logdx) is then constructed and the IV. SUMMARY AND DISCUSSION

region over which the resulting graph has a constant slope
1— D determines the box dimensidn the box dimension is
usually simply referred to as the fractal dimension. Although
it is not the only method for estimating the fractal dimension .,
of a curve, we will make use of the box-counting technique
to allow for a sensible comparison with the results in Refs.
[2,4]

In Fig. 4, we display the results of the box-counting
method as applied to the Riemann potential fbr
=500, 5000, 10000. In keeping with R¢2], we have fo-
cused on the rangee [0,10] for the analysis. What is clear
from the figure is that the slopa of the linear region in the
graph is essentially unchanged foi>500. In fact, the
slopes forN=5000 andN=10000 are virtually identical. o7 |
Given that the fractal dimension is given By=1+|m|, we
conclude that to two significant figureB,=1.5 for the the
Riemann zeros potential. This result is consistent with the ‘ , ‘ ‘
findings of Wu and Sprund2] who likewise obtained 30 o5 20 15 10 0.5
=1.5. We see no evidence at all fbor=2 as was suggested
by the work of Ramanet al. [4].

Figure 5 shows the results of the box-counting method for  F|G. 5. Box-counting method analysis of the fractal dimension
the prime number potential. In contrast to the Riemann zerosf the prime potential withtop to bottom N= 10 000,5000,500.
there is a noticeable increase in the slope of the clirege  The negative slope of the curve is the fractal dimension minus one.
larger fractal dimensionas one increases the number of Note that the difference in the curves frofd=5000 to N
fitted levels from N=500 to N=5000. However, for =10000 is negligible.

FIG. 4. Box-counting method analysis of the fractal dimension
f the Riemann potential foftop to bottom N= 10 000,5000,500.
he negative slope of the curve is the fractal dimension minus one.

We have numerically examined the reconstruction of a 1D
local potential from a set of energy levels using two distinct

log(PAx)
~

log(Ax)
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inversion procedures. Applying these methods to the Riepear to play a pivotal role in determining the fractal dimen-
mann zeros and the prime number sequence we find that bostion of the potential.

inversion techniques produce the same quantum potential The prime number potential has also been investigated
when applied to the same set of energy levels. This providegnd found to have fractal dimensidn=1.8. This result is
evidence that the inversion problem in 1D results in a uniquéomewhat surprising since the NNSD of the primes is almost
potential. Thus, the answer to the first question raised in th@oissonlike, whereas the Riemann zeros obey(thaotig
Introduction is affirmative. Based on this finding, it follows GUE statistics. Unlike the Riemann potential, our calculation
that the fractal dimension cannot depend on the method 4¥f the prime potential’s fractal dimension suggests that there
inversion. We have also examined the issue of the fractdl"@y be a very slow convergencas N—) of the fractal
dimension of the Riemann zeros for upNo=40000 levels dimension toD=2. This possibility has also been noted in
and estimate thab=1.5. This result is in complete agree- Ref. [4] where the fractal properties of white-noise-like po-
ment with Wu and Sprung®®] earlier estimatealbeit using tentials corresponding to the GUE statistics were studied.
o_nly N=500 Ievelg‘f, and iIIustrateg that the.potentials in\(es— ACKNOWLEDGMENTS
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