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Riemann zeros, prime numbers, and fractal potentials
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Using two distinct inversion techniques, the local one-dimensional potentials for the Riemann zeros and
prime number sequence are reconstructed. We establish that both inversion techniques, when applied to the
same set of levels, lead to the same fractal potential. This provides numerical evidence that the potential
obtained by inversion of a set of energy levels is unique in one dimension. We also investigate the fractal
properties of the reconstructed potentials and estimate the fractal dimensions to beD51.5 for the Riemann
zeros andD51.8 for the prime numbers. This result is somewhat surprising since the nearest-neighbor spac-
ings of the Riemann zeros are known to be chaotically distributed, whereas the primes obey almost Poissonlike
statistics. Our findings show that the fractal dimension is dependent on both level statistics and spectral rigidity,
D3, of the energy levels.
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I. INTRODUCTION

In the early work of Wuet al. @1# a general numerica
algorithm was developed that could reconstruct a o
dimensional~1D! local potential from an essentially arbitrar
set of levels~i.e., bound states!. The basic idea behind th
method~see Sec. II below! is to functionally minimize the
potential so that it exactly reproduces the prescribed ene
eigenvalues. This is, in principle, a solution of the 1D qua
tum inverse problem if one could fit the infinitely many le
els to a local potential. Of course, this is beyond any num
cal algorithm’s ability, and one has to settle for fitting on
the firstN eigenvalues. Since the algorithm requires a dir
solution of the Schro¨dinger equation~SE! for every eigen-
value, it is practically limited to fitting roughlyN;O(103)
eigenvalues. In an interesting application of this algorith
Wu and Sprung@2# chose as their eigenvalue spectrum t
complex zeros~it is implicit throughout this paper that zero
refer to the complex zeros of thez function! of the Riemann
zeta function, which is well known in number theory@3#. By
finding a local 1D potential that exactly reproduced the fi
N5500 ‘‘eigenvalues,’’ they had effectively found a 1
quantum Hamiltonian for the first 500 zeros of the Riema
z function. This is, of course, interesting in its own rig
because such Hamiltonians have long been conjecture
hold the key to proving the celebrated Riemann hypothe
@3#. Their reconstructed potential was found to be fractal, a
the fractal dimension was estimated to beD51.5. This result
suggests the intriguing possibility that an integrable sys
with time-reversal symmetry may generate the Riemann
ros provided the potential is fractal. It is worth commenti
that the precise meaning one can attach to such 1D poten
is not clear. In particular, taking a chaotic system~i.e., the
Riemann zeros! and forcing it to be integrable will lead to
potential that is dependent on the dimension of the Hilb
space~i.e., number of levels fitted!.

Motivated by the work mentioned above, Ramaniet al.
@4# also investigated the reconstruction of a 1D syste
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quantum Hamiltonian from its eigenvalues. Their approa
to solving the inverse problem was to use a ‘‘dressing tra
formation’’ based on techniques developed in the solution
the nonlinear Korteweg–de Vries equation. Their meth
being much more efficient numerically than the direct S
approach resulted in many more levels being fitted for
same numerical effort. Unfortunately, rather than directly e
amining the Riemann zeros, as Wu and Sprung had pr
ously done, they investigated the fractal properties of pot
tials generated from energy levels whose nearest-neigh
spacing distribution~NNSD! were the Gaussian unitary en
semble~GUE! @5#. Although the NNSD of the Riemann ze
ros are also known to belong to the GUE, Ramaniet al.
could only make general comments about 1D potentials g
erated from the GUE statistics, but nothing specific about
Riemann zeros. Nevertheless, their work suggests, u
O(104) levels, a fractal dimension ofD52 as N→` for
GUE reconstructed potentials. By extension, they conj
tured that their more accurate estimate of the fractal dim
sion leads to a value ofD52 for the Riemann potential.

In a reply to this work, Wu and Sprung@6# have pointed
out that using a different spectrum~i.e., a set of energy levels
whose NNSD is the GUE rather than the actual comp
Riemann zeros! does not necessarily imply that the fract
dimension of the reconstructed potential should be the sa
One of the key reasons behind this statement is the lac
long-range correlations~i.e., the so-called spectral rigidity
D3) in the generic GUE spectrum used in Ref.@4#. Indeed, it
was argued that if the fitting spectrum does not cont
proper long-range correlations, the resulting potential m
appear to be more random than the Riemann zeros poten
This, of course, can result in two different estimates for
fractal dimension even if a large number of levels have b
fitted. Another important concern raised in their reply is th
the potential obtained by inversion of the levels need not
unique. In other words, even if Ramaniet al. had used the
Riemann zeros as their fitting spectrum, they may not h
obtained the same potential; that is, the fractal dimens
©2003 The American Physical Society11-1
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may depend on the inversion technique applied.
In light of the above, we believe that there are seve

questions that have been left unanswered.~i! For the same
set of energy levels, are the potentials reconstructed f
different inversion procedures unique?~ii ! Does the fractal
dimension depend on the inversion technique?~iii ! What is
the fractal dimension for the Riemann zeros potential?~iv! Is
the fractal dimension a generic quantity for reconstructed
potentials or does it depend on the NNSD andD3 statistics of
the energy level spectrum?

In what follows, we will attempt to provide answers
these questions. We will begin by presenting a brief ov
view of the numerical inversion techniques used in Re
@2,4#, and then apply them to reconstruct the potentials of
Riemann zeros and prime numbers. Our decision to focu
these number sequences is threefold. First, the contradic
resultsD51.5 andD52 for the fractal dimension of the
Riemann potential remain unresolved. Second, the Riem
zeros are known to be dual to the prime numbers in the se
that all of the primes are encoded through the complex R
mann zeros via Riemann’s formula@3,7#. One may then
speculate as to whether any additional relationships betw
the Riemann zeros and prime numbers can be obtained
the reconstructed fractal potentials. Finally, since the NN
of the Riemann zeros belong to the GUE class, and the pr
numbers obey a more poissonlike distribution, it is intere
ing to investigate the dependence of the fractal dimension
the level statistics. The reconstructed potentials obtai
from the two inversion methods will then be used to addr
the questions of uniqueness and fractal dimension.

II. RECONSTRUCTING THE POTENTIAL FROM A SET
OF LEVELS

In this section, we will give a brief overview of the tw
inversion techniques used in this paper to reconstruct
local 1D potentials. After this presentation, we will compa
the reconstructed potentials for the Riemann zeros and p
number sequence obtained from both methods.

A. Direct SE approach

Perhaps the most intuitive approach to solving the inve
problem is to directly invoke the SE. One initially starts fro
some arbitrary potentialV(x) ~although for reasons of con
vergence, it is wiser to start from the semiclassical poten
as described in Ref.@2#! and solve the SE to obtain a set
eigenvalues«n . One then defines a ‘‘cost function’’

F5(
n

~«n2En!2, ~1!

whereEn are the exact eigenvalues one wishes to reprod
PotentialV(x) is now adjusted in such a way as to minimi
the cost function. Mathematically, this results in the follo
ing functional equation:

dF

dV~x!
52(

n
~«n2En!fn

2~x!50, ~2!
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wherefn(x) is thenth normalized wave function. The func
tional minimization can be performed using a conjugate g
dient method and the Numerov technique can be used
solve the discrete 1D SE. We have used this approac
successfully reproduce all of the numerical data for the R
mann zeros reported in Ref.@2#. Unfortunately, even on mod
ern PC~Workstations!, this direct approach involves a larg
computational undertaking. We have found it totally impra
tical to go beyondN52000 levels when using this techniqu

B. Method of the dressing transformation

The basis for the dressing transformation can be fou
in the soliton theory of nonlinear wave equations. T
details of this approach are presented in Ref.@4#, and we
give here only the essential equations required for its imp
mentation. The starting point is a given set of leve
e0 ,e1 , . . . ,eN21 ,eN , which have been shifted so that on
has exactlyN21 negative eigenvalues with the last eige
value satisfyingeN50. In this way, the potential is con
structed from the ‘‘top down.’’ This does not impose an
restrictions other than the requirement that the number
levels to be fitted is fixed in advance. An initial potenti
V(x)50 is then used as input and the first-order differen
equation~diffeq!

f 82 f 21V~x!5e ~3!

is evaluated numerically withf (0)50 ande5eN21. Once
function f has been found at all points, a new potentialW(x)
is constructed from the diffeq:

W~x!52e12 f 22V~x!. ~4!

This new potential is then substituted back into Eq.~3! @i.e.,
W(x)→V(x)] with the eigenvalue now beinge5eN22. The
choice f (0)50 is enforced throughout the calculation an
ensures that the final potentialV(x) is even. This iterative
procedure is continued until all of the eigenvalues have b
exhausted. The finalW(x) is the desired reconstructed po
tential that reproduces exactly all of theN eigenvalues. The
integration of Eq.~3! can be performed using any standa
method, but we have used a fourth-order Runge-Kutta~RK!
method with step sizeh5131025 to ensure high accuracy
Nevertheless, it should be clear that the dressing transfor
tion is numerically a far superior method since it does n
require a large parameters’ search in the construction of
potential. Consequently, it is easy to fit orders of magnitu
more levels than in the direct SE approach.

C. Uniqueness of the reconstructed potentials

Having provided the basic background for numerica
solving the inverse problem, we are now in a position
address the question of uniqueness. To this end, we firs
construct the potential for the Riemann zeros withN5500.
This number was chosen because it represents the maxi
number of Riemann zeros fitted in Ref.@2#. Figure 1 displays
the potential obtained from the direct SE approach~solid
curve! and the dressing transformation~dashed!. In the inset
1-2
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to the figure, we zoom in on the the regionxP@0,5# to illus-
trate the remarkable agreement between the two meth
which continues until one approaches energies near the
fitted level (x'35). Obviously, above this threshold the p
tentials cannot agree since the SE approach uses the s
classical profile as its zeroth-order potential whereas
dressing transformation takesV(x)50. However, as the
number of levels is increased, this threshold is moved
higher and higher energies, so that asN→`, the two poten-
tials should agree over all space. The equivalence betw
the two inversion techniques has been checked for up tN
52000 ~which computationally speaking, represents the
per limit of the SE approach!, but we see absolutely no rea
son why this equivalence should not be true for arbitra
largeN. Nevertheless, to ensure that this agreement is no
some way fortuitous, we have also reconstructed the po
tial for the prime number sequence withN5500. The results
of the two approaches for the primes are shown in Fig
Again, the potentials are indistinguishable except for regi
near the last fitted level.

It also proves instructive to compare in more detail t
reconstructed potentials for the Riemann zeros and pr
numbers. To facilitate this comparison, we present in Fig
enlargements of the potentials forN52000,5000,10 000 lev
els around the minimum~one could look at other regions o
the curves and obtain similar graphs!. Figures 3~a!–3~c! cor-
respond to the Riemann zeros whereas Figs. 3~d!–3~e! cor-
respond to the prime potential. Several interesting obse
tions can be made at this point. First, we note that for a gi
number of fitted levels, the Riemann zeros potential loo
less ‘‘noisy’’ than the prime potential. In fact, byN
510 000, the prime potential takes on the characteristic
~roughly speaking! white noise, whereas the Riemann zer
appear to have far more structure. In particular, the Riem
potential contains large jumps at very specific spatial po
tions which appear to be quite robust~i.e., the positions of

FIG. 1. The reconstructed potential for the Riemann zeros w
N5500 fitted levels. The dashed curve is obtained from the dr
ing transformation while the solid curve is from the direct SE a
proach. The inset shows an enlargement of the potential nea
minimum. The two curves are indistinguishable belowx'35.
06621
ds,
st

mi-
e

o

en

-

in
n-

.
s

e
3

a-
n
s

of
s
n

i-

the jumps do not change asN increases!. In contrast, any
local structure present in the prime potential is complet
washed out byN510 000. This suggests that the prime p
tential may have a larger fractal dimension~i.e., close toD
52 of white noise! than the Riemann zeros. Indeed, the
observations lead us to consider more closely the fractal
tentials generated by Ramaniet al. @4#.

As we mentioned earlier, the potentials in Ref.@4# were
obtained from a generic GUE distribution without accou
ing for theD3 statistics. A comparison of our Figs. 3~a!–3~c!
with their Figs. 1~a!–1~c! clearly illustrates that a generi

h
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-
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FIG. 2. As in Fig. 1, but for the prime numbers. Again, th
curves are indistinguishable for energies below the last fitted le

FIG. 3. Panels~a!–~c! and ~d!–~f! correspond to the Rieman
zeros and prime potential, respectively. The number of fitted lev
from top to bottom isN52000,5000,10 000. We have zoomed in o
the rangexP@0,5# to highlight the differences between the tw
potentials.
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GUE distributioncannotcapture, even qualitatively, the de
tails of the Riemann zeros potential. We are therefore
clined to agree with the assertion in Ref.@6# that long-range
correlations in the level spectrum play an important role
determining the fractal properties of the potential. This
further emphasized by noting that for largeN, the prime
potential @see Fig. 3~f!# looks very similar to the largeN
GUE fractal potential in Ref.@4#, which was conjectured to
haveD52 asN→`. It is perhaps then not so ambitious
suggest that the prime potential also has fractal dimen
D52. We cannot, however, make such claims for the R
mann zeros, which evidently require a more careful qua
tative analysis.

III. FRACTAL DIMENSION

We have seen in the preceding section that for the s
number of fitted levels, the oscillatory behavior of the R
mann zeros and prime potentials are quite different. W
significance then~if any! do these rapid oscillations have o
the fractal dimension? Before we answer that question,
perhaps useful to give a short account of the method use
the authors in Refs.@2,4# to estimate the fractal dimension o
their reconstructed potentials.

The standard procedure for numerically estimating
fractal dimension of curves such as those we have gener
is to use the box-counting technique@8#. Simply put, the
box-counting technique involves choosing a region on
curve ~over which the character of the oscillations does
change! and normalizing the axes so that the region is
square of side length equal to unity. The square region is t
divided inton2 cells of side lengthDx51/n and the number
of cells P that contain a portion of the curve is counted.
plot of log(PDx) versus log(Dx) is then constructed and th
region over which the resulting graph has a constant sl
12D determines the box dimensionD; the box dimension is
usually simply referred to as the fractal dimension. Althou
it is not the only method for estimating the fractal dimensi
of a curve, we will make use of the box-counting techniq
to allow for a sensible comparison with the results in Re
@2,4#

In Fig. 4, we display the results of the box-countin
method as applied to the Riemann potential forN
5500, 5000, 10 000. In keeping with Ref.@2#, we have fo-
cused on the rangexP@0,10# for the analysis. What is clea
from the figure is that the slopem of the linear region in the
graph is essentially unchanged forN.500. In fact, the
slopes forN55000 andN510 000 are virtually identical.
Given that the fractal dimension is given byD511umu, we
conclude that to two significant figures,D51.5 for the the
Riemann zeros potential. This result is consistent with
findings of Wu and Sprung@2# who likewise obtainedD
51.5. We see no evidence at all forD52 as was suggeste
by the work of Ramaniet al. @4#.

Figure 5 shows the results of the box-counting method
the prime number potential. In contrast to the Riemann ze
there is a noticeable increase in the slope of the curve~i.e.,
larger fractal dimension! as one increases the number
fitted levels from N5500 to N55000. However, for
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10 000,N,40 000 ~not shown!, the slope is found to be
practically unchanged. We are, therefore, led to conclude
the fractal dimension of the primes isD51.8. We are, how-
ever, open to the possibility that asN→` the fractal dimen-
sion of the prime potential approachesD52, based on the
qualitative behavior of the potential seen in Figs. 3~d!–3~f!.
Indeed, a similar slow convergence of the fractal dimens
was also observed in Ref.@4# for the GUE statistics. How-
ever, numerically investigating this convergence would
quire possibly levels of the order of 106, which is well be-
yond the capabilities of our current computational facilitie

IV. SUMMARY AND DISCUSSION

We have numerically examined the reconstruction of a
local potential from a set of energy levels using two distin

FIG. 4. Box-counting method analysis of the fractal dimens
of the Riemann potential for~top to bottom! N510 000,5000,500.
The negative slope of the curve is the fractal dimension minus o

FIG. 5. Box-counting method analysis of the fractal dimens
of the prime potential with~top to bottom! N510 000,5000,500.
The negative slope of the curve is the fractal dimension minus o
Note that the difference in the curves fromN55000 to N
510 000 is negligible.
1-4
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inversion procedures. Applying these methods to the R
mann zeros and the prime number sequence we find that
inversion techniques produce the same quantum pote
when applied to the same set of energy levels. This prov
evidence that the inversion problem in 1D results in a uniq
potential. Thus, the answer to the first question raised in
Introduction is affirmative. Based on this finding, it follow
that the fractal dimension cannot depend on the metho
inversion. We have also examined the issue of the fra
dimension of the Riemann zeros for up toN540 000 levels
and estimate thatD51.5. This result is in complete agree
ment with Wu and Sprung’s@2# earlier estimate~albeit using
only N5500 levels!, and illustrates that the potentials inve
tigated by Ramaniet al. @4# have little bearing on the Rie
mann zeros potential. In particular, we demonstrated that
insufficient to simply account for the NNSD of the ener
levels to capture the local details responsible for the fra
properties of the reconstructed potential; the Riemann z
display local structure that is not reproduced by a gen
GUE level spectrum. Therefore, long-range correlations
s.

06621
-
th

ial
es
e
e

of
al

is

al
os
ic
-

pear to play a pivotal role in determining the fractal dime
sion of the potential.

The prime number potential has also been investiga
and found to have fractal dimensionD51.8. This result is
somewhat surprising since the NNSD of the primes is alm
poissonlike, whereas the Riemann zeros obey the~chaotic!
GUE statistics. Unlike the Riemann potential, our calculat
of the prime potential’s fractal dimension suggests that th
may be a very slow convergence~as N→`) of the fractal
dimension toD52. This possibility has also been noted
Ref. @4# where the fractal properties of white-noise-like p
tentials corresponding to the GUE statistics were studied
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